16 research outputs found

    Case acquisition from text: ontology-based information extraction with SCOOBIE for myCBR

    Get PDF
    myCBR is a freely available tool for rapid prototyping of similarity-based retrieval applications such as case-based product recommender systems. It provides easy-to-use model generation, data import, similarity modelling, explanation, and testing functionality together with comfortable graphical user interfaces. SCOOBIE is an ontology-based information extraction system, which uses symbolic background knowledge for extracting information from text. Extraction results depend on existing knowledge fragments. In this paper we show how to use SCOOBIE for generating cases from texts. More concrete we use ontologies of the Web of Data, published as so called Linked Data interlinked with myCBR’s case model. We present a way of formalising a case model as Linked Data ready ontology and connect it with other ontologies of the Web of Data in order to get richer cases

    The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats

    Get PDF
    The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet—undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Adherence to the mediterranean lifestyle and desired body weight loss in a mediterranean adult population with overweight: a PREDIMED-Plus Study

    Get PDF
    Background: Body weight dissatisfaction is a hindrance to following a healthy lifestyle and it has been associated with weight concerns. Objectives: The aim of this study was to assess the association between the adherence to the Mediterranean lifestyle (diet and exercise) and the desired body weight loss in an adult Mediterranean population with overweight. Methods: Cross-sectional analysis in 6355 participants (3268 men; 3087 women) with metabolic syndrome and BMI (Body mass index) between 27.0 and 40.0 kg/m2 (55-75 years old) from the PREDIMED-Plus trial. Desired weight loss was the percentage of weight that participants wished to lose. It was categorized into four cut-offs of this percentage (Q1: <10%, n = 1495; Q2: 10-15%, n = 1804; Q3: <15-20%, n = 1470; Q4: ≥20%, n = 1589). Diet was assessed using a validated food frequency questionnaire and a 17-item Mediterranean diet questionnaire. Physical activity was assessed by the validated Minnesota-REGICOR and the validated Spanish version of the Nurses' Health Study questionnaire. Results: Participants reporting higher percentages of desired weight loss (Q3 and Q4) were younger, had higher real and perceived BMI and were more likely to have abdominal obesity. Desired weight loss correlated inversely to physical activity (Q1: 2106 MET min/week; Q4: 1585 MET min/week. p < 0.001) and adherence to Mediterranean diet (Q1: 8.7; Q4: 8.3. p < 0.001). Conclusions: In older Mediterranean individuals with weight excess, desired weight loss was inversely associated with Mediterranean lifestyle adherence. Deeply rooted aspects of the MedDiet remained similar across groups. Longitudinal research is advised to be able to establish causality.The PREDIMED-Plus trial was supported by the official funding agency for biomedical research of the Spanish government, ISCIII, through the Fondo de Investigación para la Salud (FIS), which is co-funded by the European Regional Development Fund (five coordinated FIS projects led by J.S.-S. and J.Vidal, including the following projects: PI13/00673, PI13/00492, PI13/00272, PI13/01123, PI13/00462, PI13/00233, PI13/02184, PI13/00728, PI13/01090, PI13/01056, PI14/01722, PI14/00636, PI14/00618, PI14/00696, PI14/01206, PI14/01919, PI14/00853, PI14/01374, PI14/00972, PI14/00728, PI14/01471, PI16/00473, PI16/00662, PI16/01873, PI16/01094, PI16/00501, PI16/00533, PI16/00381, PI16/00366, PI16/01522, PI16/01120, PI17/00764, PI17/01183, PI17/00855, PI17/01347, PI17/00525, PI17/01827, PI17/00532, PI17/00215, PI17/01441, PI17/00508, PI17/01732, PI17/00926, PI19/00957, PI19/00386, PI19/00309, PI19/01032, PI19/00576, PI19/00017, PI19/01226, PI19/00781, PI19/01560, and PI19/01332, the Especial Action Project entitled: Implementación y evaluación de una intervención intensiva sobre la actividad física Cohorte PREDIMED-Plus grant to J.S.-S., the European Research Council (Advanced Research Grant 2013–2018, 340918) to Miguel Ángel Martínez-González, the Recercaixa Grant to J.S.-S. (2013ACUP00194), Grants from the Consejería de Salud de la Junta de Andalucía (PI0458/2013, PS0358/2016, and PI0137/2018), a Grant from the Generalitat Valenciana (PROMETEO/2017/017), a SEMERGEN Grant, EU-COST Action CA16112, a Grant of support to research groups no. 35/2011 from the Balearic Islands Government, Grants from Balearic Islands Health Research Institute (IDISBA), funds from the European Regional Development Fund (CIBEROBN CB06/03 and CB12/03) and from the European Commission (EAT2BENICE_H2020_SFS2016). M. Rosa Bernal-López was supported by “Miguel Servet Type I” program (CP15/00028) from the ISCIII-Madrid (Spain), cofinanced by the European Regional Development Fund. Jordi Salas-Salvadó is partially supported by ICREA under the ICREA Academia programme. Cristina Bouzas received a Fernando Tarongí Bauzà PhD Grant. I.M Gimenez-Alba received a grant FPU from the Ministry of Science, Innovation and Univesities (reference FPU 18/01703). The funding sponsors had no role in the design of the study, in the collection, analyses, or interpretation of the data; in the writing of the manuscript, and in the decision to publish the results
    corecore